## Computer Memory and the Future of NVM

Caleb Froelich



## Memory Market Overview • Volatile: \* (1964) - SRAM is used for limited, fast working memory - expensive and power-hungry. \* (1967) - DRAM is used for high volumes of working memory - complex and slower than SRAM. Non-Volatile: (1956) - PROM is used for storage of permanent data, usually low-level programs – data cannot be erased or changed. (1972) - EEPROM can be erased and re-programmed. Still utilized today in modem, video cards and many electronic gadgets. (1981) - Flash memory is invented! - A universal non-volatile memory type that is used in most computers as a storage medium. · Utilizes floating gate transistors. · MUCH, much faster. • Ability to clear and rewrite chunks of data. "the number of transistors in a dense integrated circuit doubles about every two years"









|                             | SRAM             | DRAM             | Flash<br>(NOR)    | Flash<br>(NAND)  | FRAM               | MRAM               | РСМ                | STT-RAM            |
|-----------------------------|------------------|------------------|-------------------|------------------|--------------------|--------------------|--------------------|--------------------|
| Non-Volatile                | No               | No               | Yes               | Yes              | Yes                | Yes                | Yes                | Yes                |
| Cell size (F <sup>2</sup> ) | 50-120           | 6-10             | 10                | 5                | 15-34              | 16-40              | 6-12               | 6-20               |
| Read time (ns)              | 1-100            | 30               | 10                | 50               | 20-80              | 3-20               | 20-50              | 2-20               |
| Write/Erase<br>time (ns)    | 1-100            | 50 / 50          | 10 ms /<br>100 ms | 1 ms /<br>0.1 ms | 50 / 50            | 3-20               | 50 / 120           | 2-20               |
| Endurance                   | 10 <sup>56</sup> | 10 <sup>16</sup> | 10 <sup>5</sup>   | 10 <sup>6</sup>  | 10 <sup>12</sup> 1 | > 10 <sup>25</sup> | 10 <sup>10</sup> 1 | > 10 <sup>25</sup> |
| Voltage<br>required         | No               | 2 V              | 6-8 V             | 16-20 V          | 2-3 V              | 3 V                | 1.5-3.5 V          | <1.5 V             |
| Cost                        | \$\$\$\$         | \$\$\$           | \$                | \$               | \$\$\$             | \$\$\$             | \$\$\$             | ?                  |



## Sources

- https://pirl.nvsl.io/2019/11/07/new-memories-create-new-ways-to-compute/
- <u>http://www.ti.com/lit/ml/slat151/slat151.pdf</u>
- <u>https://www.itproportal.com/features/mram-overcomes-sram-dram-and-flash-limitations/</u>
- <u>https://www.pdl.cmu.edu/PDL-FTP/NVM/sttram\_ispass13.pdf</u>
- https://audioxpress.com/news/Intel-and-Micron-Announce-New-Class-of-Memory-1-000-Times-Faster-than-NAND
- <u>https://finance.yahoo.com/news/emerging-memories-ramp-report-2019-092907529.html</u>
- <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4182445/</u>
- https://www.forbes.com/sites/tomcoughlin/2018/09/30/the-future-ofemerging-memories/#5499dc4b3f5a